Алгебра 8 класс учебник Макарычев, Миндюк ответы – номер 706
- Тип: ГДЗ, Решебник.
- Авторы: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И.
- Часть: без частей.
- Год: 2019-2024.
- Серия: Школа России (ФГОС).
- Издательство: Просвещение.
Номер 706.
Номер 706.
Решите систему уравнений:
а) $$
\left\{\begin{array}{l}
y-2 x=2 \\
5 x^2-y=1
\end{array}\right.
$$
б) $$
\left\{\begin{array}{l}
x-2 y^2=2 \\
3 x+y=7
\end{array}\right.
$$
в) $$
\left\{\begin{array}{l}
3 x^2-2 y=1 \\
2 x^2-y^2=1
\end{array}\right.
$$
г) $$
\left\{\begin{array}{l}
3 x^2+2 y^2=11 \\
x+2 y=3
\end{array}\right.
$$
д) $$
\left\{\begin{array}{l}
x^2+y^2=100 \\
3 x=4 y
\end{array}\right.
$$
е) $$
\left\{\begin{array}{l}
2 x^2-y^2=32 \\
2 x-y=8
\end{array}\right.
$$
а) $$
\left\{\begin{array} { l }
{ y - 2 x = 2 } \\
{ 5 x ^ { 2 } - y = 1 }
\end{array} \left\{\begin{array} { l }
{ y = 2 + 2 x } \\
{ 5 x ^ { 2 } - 2 - 2 x - 1 = 0 }
\end{array} \left\{\begin{array}{l}
y=2+2 x \\
5 x^2-2 x-3=0
\end{array}\right.\right.\right.
$$
5х² − 2х − 3 = 0
D = b² − 4ac = (−2)² − 4 ⋅ 5 ⋅ (−3) = 4 + 60 = 64 > 0, имеет 2 корня
x₁ = $$
\frac{-b+\sqrt{D}}{2 a}=\frac{2+\sqrt{64}}{2 ⋅ 5}
$$ = 2 + 8/10 = 10/10 = 1
x₂ = $$
=\frac{-b-\sqrt{D}}{2 a}=\frac{2-\sqrt{64}}{2 ⋅ 5}
$$ = 2 − 8/10 = −6/10 = −0,6
x₁ = 1, x₂ = −0,6
$$
\left\{\begin{array} { l }
{ x _ { 1 } = 1 } \\
{ y _ { 1 } = 2 + 2 ⋅ 1 = 4 }
\end{array} \left\{\begin{array}{l}
x_1=1 \\
y_1=4
\end{array}\right.\right.
$$
$$
\left\{\begin{array} { l }
{ x _ { 2 } = - 0 , 6 } \\
{ y _ { 2 } = 2 + 2 ( - 0 , 6 ) = 0 , 8 }
\end{array} \left\{\begin{array}{l}
x_2=-0,6 \\
y_2=0,8
\end{array}\right.\right.
$$
(1; 4), (−0,6; 0,8)
б) $$
\left\{\begin{array} { l }
{ x - 2 y ^ { 2 } = 2 } \\
{ 3 x + y = 7 }
\end{array} \left\{\begin{array}{l}
x=2+2 y^2 \\
3\left(2+2 y^2\right)+y=7
\end{array}\right.\right.
$$ $$
\left\{\begin{array} { l }
{ x = 2 + 2 y ^ { 2 } } \\
{ 6 + 6 y ^ { 2 } + y - 7 = 0 }
\end{array} \left\{\begin{array}{l}
x=2+2 y^2 \\
6 y^2+y-1=0
\end{array}\right.\right.
$$
6у² + у − 1 = 0
D = b² − 4ac = 1² − 4 ⋅ 6 ⋅ (−1) = 1 + 24 = 25 > 0, имеет 2 корня
y₁ = $$
\frac{-b+\sqrt{D}}{2 a}=\frac{-1+\sqrt{25}}{2 ⋅ 6}=
$$ = −1 + 5/12 = 4/12 = 1/3
y₂ = $$
\frac{-b-\sqrt{D}}{2 a}=\frac{-1-\sqrt{25}}{2 ⋅ 6}
$$ = −1 − 5/12 = −6/12 = −1/2 = −0,5
y₁ = 1/3, y₂ = −0,5
$$
\left\{\begin{array} { l }
{ y _ { 1 } = \frac { 1 } { 3 } } \\
{ x _ { 1 } = 2 + 2 ( \frac { 1 } { 3 } ) ^ { 2 } = 2 \frac { 2 } { 9 } }
\end{array} \left\{\begin{array}{l}
y_1=\frac{1}{3} \\
x_1=2 \frac{2}{9}
\end{array}\right.\right.
$$
$$
\left\{\begin{array} { l }
{ y _ { 2 } = - 0 , 5 } \\
{ x _ { 2 } = 2 + 2 \square ( - 0 , 5 ) ^ { 2 } = 2 , 5 }
\end{array} \left\{\begin{array}{l}
y_2=-0,5 \\
x_2=2,5
\end{array}\right.\right.
$$
(22/9; 1/3), (2,5; −0,5)
в) $$
\left\{\begin{array} { l }
{ 3 x ^ { 2 } - 2 y = 1 } \\
{ 2 x ^ { 2 } - y ^ { 2 } = 1 }
\end{array} \left\{\begin{array}{l}
2 y=3 x^2-1 \\
2 x^2-y^2=1
\end{array}\right.\right.
$$ $$
\left\{\begin{array} { l }
{ y = \frac { 3 x ^ { 2 } - 1 } { 2 } } \\
{ 2 x ^ { 2 } - y ^ { 2 } = 1 }
\end{array} \left\{\begin{array}{l}
y=1,5 x^2-0,5 \\
2 x^2-\left(1,5 x^2-0,5\right)^2=1
\end{array}\right.\right.
$$
$$
\left\{\begin{array}{l}
y=1,5 x^2-0,5 \\
2 x^2-2,25 x^2+1,5 x-0,25-1=0
\end{array}\right.
$$ $$
\left\{\begin{array}{l}
y=1,5 x^2-0,5 \\
-0,25 x^2+1,5 x-1,25=0
\end{array}\right.
$$
−0,25х² + 1,5х − 1,25 = 0 : (−0,25)
х² − 6х + 5 = 0
D = b² − 4ac = (−6)² − 4 ⋅ 1 ⋅ 5 = 36 − 20 = 16 > 0, имеет 2 корня
x₁ = $$
\frac{-b+\sqrt{D}}{2 a}=\frac{6+\sqrt{16}}{2 ⋅ 1}
$$ = 6 + 4/2 = 10/2 = 5
x₂ = $$
\frac{-b-\sqrt{D}}{2 a}=\frac{6-\sqrt{16}}{2 ⋅ 1}
$$ = 6 − 4/2 = 2/2 = 1
x₁ = 5, x₂ = 1
$$
\left\{\begin{array} { l }
{ x _ { 1 } = 5 } \\
{ y _ { 1 } = 1 , 5 5 ^ { 2 } - 0 , 5 = 3 7 }
\end{array} \left\{\begin{array}{l}
x_1=5 \\
y_1=37
\end{array}\right.\right.
$$
$$
\left\{\begin{array} { l }
{ x _ { 2 } = 1 } \\
{ y _ { 2 } = 1 , 5 ⋅ ^ { 2 } - 0 , 5 = 1 }
\end{array} \left\{\begin{array}{l}
x_2=1 \\
y_2=1
\end{array}\right.\right.
$$
(5; 37), (1; 1)
г) $$
\left\{\begin{array} { l }
{ 3 x ^ { 2 } + 2 y ^ { 2 } = 1 1 } \\
{ x + 2 y = 3 }
\end{array} \left\{\begin{array}{l}
3(3-2 y)^2+2 y^2=11 \\
x=3-2 y
\end{array}\right.\right.
$$ $$
\left\{\begin{array}{l}
3\left(9-12 y+4 y^2\right)+2 y^2=11 \\
x=3-2 y
\end{array}\right.
$$
$$
\left\{\begin{array} { l }
{ 2 7 - 3 6 y + 1 2 y ^ { 2 } + 2 y ^ { 2 } - 1 1 = 0 } \\
{ x = 3 - 2 y }
\end{array} \left\{\begin{array}{l}
14 y^2-36 y+16=0 \\
x=3-2 y
\end{array}\right.\right.
$$
14у² − 36у + 16 = 0 : 2
7у² − 18у + 8 = 0
D = b² − 4ac = (−18)² − 4 ⋅ 7 ⋅ 8 = 324 − 224 = 100 > 0, имеет 2 корня
y₁ = $$
\frac{-b+\sqrt{D}}{2 a}=\frac{18+\sqrt{100}}{2 ⋅ 7}
$$ = 18 + 10/14 = 28/14 = 2
y₂ = $$
\frac{-b-\sqrt{D}}{2 a}=\frac{18-\sqrt{100}}{2 ⋅ 7}
$$ = 18 − 10/14 = 8/14 = 4/7
y₁ = 2, y₂ = 4/7
$$
\left\{\begin{array} { l }
{ y _ { 1 } = 2 } \\
{ x _ { 1 } = 3 - 2 2 = - 1 }
\end{array} \left\{\begin{array}{l}
y_1=2 \\
x_1=-1
\end{array}\right.\right.
$$
$$
\left\{\begin{array} { l }
{ y _ { 2 } = \frac { 4 } { 7 } } \\
{ x _ { 2 } = 3 - 2 \frac { 4 } { 7 } = 2 \frac { 6 } { 7 } }
\end{array} \left\{\begin{array}{l}
y_2=\frac{4}{7} \\
x_2=2 \frac{6}{7}
\end{array}\right.\right.
$$
(−1; 2), (26/7; 4/7)
д) $$
\left\{\begin{array} { l }
{ x ^ { 2 } + y ^ { 2 } = 1 0 0 } \\
{ 3 x = 4 y }
\end{array} \left\{\begin{array}{l}
\left(\frac{4 y}{3}\right)^2+y^2=100 \\
x=\frac{4 y}{3}
\end{array}\right.\right.
$$ $$
\left\{\begin{array}{l}
\frac{16 y^2}{9}+y^2=100 \left\lvert\, 9\left\{\begin{array}{l}
16 y^2+9 y^2-900=0 \\
x=\frac{4 y}{3}
\end{array}\right.\right. \\
x=\frac{4 y}{3}
\end{array}\right.
$$
$$
\left\{\begin{array} { l }
{ 2 5 y ^ { 2 } - 9 0 0 = 0 } \\
{ x = \frac { 4 y } { 3 } }
\end{array} \left\{\begin{array}{l}
25 y^2=900 \\
x=\frac{4 y}{3}
\end{array}\right.\right.
$$ $$
\left\{\begin{array} { l }
{ y ^ { 2 } = \frac { 9 0 0 } { 2 5 } } \\
{ x = \frac { 4 y } { 3 } }
\end{array} \left\{\begin{array} { l }
{ y = \pm \sqrt { 3 6 } } \\
{ x = \frac { 4 y } { 3 } }
\end{array} \left\{\begin{array}{l}
y= \pm 6 \\
x=\frac{4 y}{3}
\end{array}\right.\right.\right.
$$
$$
\left\{\begin{array} { l }
{ y _ { 1 } = 6 } \\
{ x _ { 1 } = \frac { 4 ⋅ 6 } { 3 } = 4 ⋅ 2 = 8 }
\end{array} \left\{\begin{array}{l}
y_1=6 \\
x_1=8
\end{array}\right.\right.
$$
$$
\left\{\begin{array} { l }
{ y _ { 1 } = - 6 } \\
{ x _ { 1 } = \frac { 4 ⋅ ( - 6 ) } { 3 } = 4 ⋅ ( - 2 ) = - 8 }
\end{array} \left\{\begin{array}{l}
y_1=-6 \\
x_1=-8
\end{array}\right.\right.
$$
(8; 6), (−8; −6)
е) $$
\left\{\begin{array} { l }
{ 2 x ^ { 2 } - y ^ { 2 } = 3 2 } \\
{ 2 x - y = 8 }
\end{array} \left\{\begin{array}{l}
2 x^2-(2 x-8)^2=32 \\
y=2 x-8
\end{array}\right.\right.
$$ $$
\left\{\begin{array}{l}
2 x^2-4 x^2+32 x-64-32 \\
y=2 x-8
\end{array}=0\left\{\begin{array}{l}
-2 x^2+32 x-96=0 \\
y=2 x-8
\end{array}\right.\right.
$$
−2х² + 32х − 96 = 0 : (−2)
х² − 16х + 48 = 0
D = b² − 4ac = (−16)² − 4 ⋅ 1 ⋅ 48 = 256 − 192 = 64 > 0, имеет 2 корня
x₁ = $$
\frac{-b+\sqrt{D}}{2 a}=\frac{16+\sqrt{64}}{2 ⋅ 1}
$$ = 16 + 8/2 = 24/2 = 12
x₂ = $$
\frac{-b-\sqrt{D}}{2 a}=\frac{16-\sqrt{64}}{2 ⋅ 1}
$$ = 16 − 8/2 = 8/2 = 4
x₁ = 12, x₂ = 4
$$
\left\{\begin{array} { l }
{ x _ { 1 } = 1 2 } \\
{ y _ { 1 } = 2 ⋅ 12 - 8 = 1 6 }
\end{array} \left\{\begin{array}{l}
x_1=12 \\
y_1=16
\end{array}\right.\right.
$$
$$
\left\{\begin{array} { l }
{ x _ { 2 } = 4 } \\
{ y _ { 2 } = 2 \square 4 - 8 = 0 }
\end{array} \left\{\begin{array}{l}
x_2=4 \\
y_2=0
\end{array}\right.\right.
$$
(12; 16), (4; 0)
С подпиской рекламы не будет
Подключите премиум подписку со скидкой в 40% за 149 ₽
Напишите свой комментарий.